Hypothesis: Electrochemical Impedance Spectroscopy (EIS) can be used to investigate cationic interaction with the choline headgroup in the ternary system of monoolein/dioleoylphosphatidylcholine/water (MO/DOPC/HO).
Experiments: EIS was used to estimate the resistance and capacitance of a freestanding membrane of a lipid cubic phase (LCP). The membrane was formed in a small cylindrical aperture separating two compartments, containing one Pt electrode each.
Hypothesis: Electrochemical impedance spectroscopy is useful to monitor anionic interactions with a Lipid Cubic Phase, as previously demonstrated for cationic interaction (Khani Meynaq et al., 2016). It was expected that the smaller hydrophilic anions, acetate and chloride, would interact differently than the large tryptophan anion with its hydrophobic tail.
View Article and Find Full Text PDFThis article describes an attempt to develop a sensor based on multi-frequency immittance spectroscopy for the determination of methotrexate (MTX) in blood serum using gold electrodes modified with antibodies. The attachment of antibodies was monitored with electrochemical immittance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The EIS measurements of MTX resulted in a data matrix of size 39 × 55.
View Article and Find Full Text PDFA supported liquid crystalline cubic phase housing glucose oxidase on an electrode surface has been suggested as bio-anode in a biofuel. The purpose of this investigation is to clarify some aspect on the mediated enzymatic oxidation of glucose in such a bio-anode where the mediator ferrocene-carboxylic acid and glucose were dissolved in the solution. The enzyme glucose oxidase was housed in the water channels of the mono-olein cubic phase.
View Article and Find Full Text PDFHypothesis: Electrochemical impedance spectroscopy, EIS, can be used as a complementary technique to investigate ion interaction with the headgroup region in the aqueous channels of a lipid cubic phase, LCP.
Experiments: A freestanding membrane made of monoolein LCP was formed by filling a small aperture that separates two cell compartments. The cell compartments were filled with electrolyte solutions at two different ionic strengths: i.