Ca-activated Cl currents (I(Cl(Ca))) are used frequently as reporters in functional studies of anesthetic effects on G protein-coupled receptors using Xenopus laevis oocytes. However, because anesthetics affect protein kinase C (PKC), they could indirectly affect I(Cl(Ca)) if this current is regulated by phosphorylation. We therefore studied the effect of modulation of either PKC or protein phosphatases PP1alpha and PP2A on I(Cl(Ca)) stimulated either by lysophosphatidate (LPA) signaling or by microinjection of Ca.
View Article and Find Full Text PDFThe aim of this study was to investigate the functional properties of the promoter of the protein phosphatase 1alpha catalytic subunit. Luciferase plasmids with different fragments of the rat catalytic subunit of the protein phosphatase 1alpha promoter ranging from -3.7 kbp to -59 bp were transiently transfected into cells by the calcium-phosphate precipitation method.
View Article and Find Full Text PDFObjective: Chronic beta-adrenergic stimulation of the cAMP-dependent signalling pathway is implicated in functionally relevant expressional changes in congestive heart failure. We studied activation and inactivation of the cardiac gene transcription mediated by the cAMP-response element (CRE) and the CRE-binding protein (CREB) as an important mechanism of a cAMP-dependent gene regulation.
Methods: We investigated the transcriptional activation by forskolin, an activator of the adenylyl cyclase, in chick embryonic cardiomyocytes transfected with a CRE-controlled luciferase construct in comparison to the phosphorylation and expression of CREB determined on immunoblots.
Objective: Chronic pressure overload in spontaneously hypertensive rats (SHR) is accompanied by heart hypertrophy and signs of heart failure. Since there is growing evidence for a possible pathophysiological role of altered protein phosphorylation in heart hypertrophy and failure, we studied here cardiac regulatory phosphoproteins and the kinases and phosphatases which regulate their phosphorylation state.
Methods: The experiments were performed in ventricles of SHR (12-13 weeks old) and age-matched normotensive Wistar-Kyoto rats (WKY).
Prostaglandin E(2) receptors, subtype EP(1) (PGE(2)EP(1)) have been linked to several physiologic responses, such as fever, inflammation, and mechanical hyperalgesia. Local anesthetics modulate these responses, which may be due to direct interaction of local anesthetics with PGE(2)EP(1) receptor signaling. We sought to characterize the local anesthetic effects on PGE(2)EP(1) signaling and elucidate mechanisms of anesthetic action.
View Article and Find Full Text PDF