Mucosal surfaces serve as the primary entry points for pathogens such as SARS- CoV-2 coronavirus or HIV in the human body. Mucosal vaccination plays a crucial role to successfully induce long-lasting systemic and local immune responses to confer sterilizing immunity. However, antigen formulations and delivery methods must be properly selected since they are decisive for the quality and the magnitude of the elicited immune responses in mucosa.
View Article and Find Full Text PDFRetrovirus-derived virus-like particles (VLPs) are particularly interesting vaccine platforms, as they trigger efficient humoral and cellular immune responses and can be used to display heterologous antigens. In this study, we characterized the intrinsic immunogenicity of VLPs and investigated their possible adjuvantization by incorporation of Toll-like receptor (TLR) ligands. We designed a noncoding single-stranded RNA (ncRNA) that could be encapsidated by VLPs and induce TLR7/8 signaling.
View Article and Find Full Text PDFTregs imprint an early immunotolerant tumor environment that prevents effective antitumor immune responses. Using transcriptomics of tumor tissues, we identified early upregulation of VEGF and TGF-β pathways compatible with tolerance imprinting. Silencing of VEGF or TGF-β in tumor cells induced early and pleiotropic modulation of immune-related transcriptome signatures in tumor tissues.
View Article and Find Full Text PDFRegulatory T cells (Tregs) are pivotal for maintenance of immune self-tolerance and also regulate immune responses to exogenous Ags, including allergens. Both decreased Treg number and function have been reported in allergic patients, offering new therapeutic perspectives. We previously demonstrated that Tregs can be selectively expanded and activated by low doses of IL-2 (ld-IL-2) inducing immunoregulation without immunosuppression and established its protective effect in autoimmune diseases.
View Article and Find Full Text PDFCD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cell therapy is a promising approach for the treatment of autoimmune diseases. To be effective, Treg cells should be in an activated state in the target tissue. This can be achieved by systemic administration of Ag-specific Treg cells, which are difficult to produce in conditions that can be translated to the clinic.
View Article and Find Full Text PDF