Host-gut microbiota interactions are more complex than good or bad. Both gut symbiotic bacteria and pathobionts can provide essential functions to their host in one scenario and yet be detrimental to host health in another. So, these gut-dwelling bacteria must be tightly controlled to avoid harmful effects on the host.
View Article and Find Full Text PDFBackground: The gut microbiota can facilitate host growth under nutrient-constrained conditions. However, whether this effect is limited to certain bacterial species remains largely unclear, and the relevant underlying mechanisms remain to be thoroughly investigated.
Results: We found that the microbiota was required for Bactrocera dorsalis larval growth under poor dietary conditions.
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive.
View Article and Find Full Text PDFThe gut must perform a dual role of protecting the host against toxins and pathogens while harboring mutualistic microbiota. Previous studies suggested that the NADPH oxidase Duox contributes to intestinal homeostasis in Drosophila by producing reactive oxygen species (ROS) in the gut that stimulate epithelial renewal. We find instead that the ROS generated by Duox in the Malpighian tubules leads to the production of Upd3, which enters the gut and stimulates stem cell proliferation.
View Article and Find Full Text PDFWhile largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging.
View Article and Find Full Text PDF