Publications by authors named "B Lavi"

Helix-distorting DNA damages block RNA and DNA polymerase, compromising cell function and fate. In human cells, these damages are removed primarily by nucleotide excision repair (NER). Here, we describe damage-sensing PCR (dsPCR), a PCR-based method for the detection of these DNA damages.

View Article and Find Full Text PDF

Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta.

View Article and Find Full Text PDF

Introduction: Testing for active SARS-CoV-2 infection is a fundamental tool in the public health measures taken to control the COVID-19 pandemic. Because of the overwhelming use of SARS-CoV-2 reverse transcription (RT)-PCR tests worldwide, the availability of test kits has become a major bottleneck and the need to increase testing throughput is rising. We aim to overcome these challenges by pooling samples together, and performing RNA extraction and RT-PCR in pools.

View Article and Find Full Text PDF

Organic photodiodes (OPDs) for its interesting optoelectronic properties has the potential to be utilized with complementary metal-oxide-semiconductor (CMOS) circuit for imaging, automotive, and security based applications. To achieve such a hybrid device as an image sensor, it is imperative that the quality of the OPD remains high on the CMOS substrate and that it has a well-connected optoelectronic interface with the underneath readout integrated circuit (ROIC) for efficient photogeneration and signal readout. Here, we demonstrate seamless integration of a thermally deposited visible light sensitive small molecule OPD on a standard commercial CMOS substrate using optimized doped PCBM buffer layer.

View Article and Find Full Text PDF

Perfect short inverted repeats (IRs) are known to be enriched in a variety of bacterial and eukaryotic genomes. Currently, it is unclear whether perfect IRs are conserved over evolutionary time scales. In this study, we aimed to characterize the prevalence and evolutionary conservation of IRs across 20 proteobacterial strains.

View Article and Find Full Text PDF