Background: Medical education in North America was shaped by a biomedically bounded framework dating back to the early nineteenth century. Yet, one renowned physician, William Osler (1849-1919), seemed to stand out among his contemporaries by promoting acupuncture as a form of treatment. Some physicians in the early 1970s proposed that Osler was ahead of his time by including acupuncture in his medical textbook, (1892).
View Article and Find Full Text PDFGlycans, consisting of covalently linked sugar units, are a major class of biopolymers essential to all known living organisms. To better understand their biological functions and further applications in fields from biomedicine to materials science, detailed knowledge of their structure is essential. However, due to the extraordinary complexity and conformational flexibility of glycans, state-of-the-art glycan analysis methods often fail to provide structural information with atomic precision.
View Article and Find Full Text PDFThe central role of the chaperome in maintaining cellular proteostasis has seen numerous viral families evolve to parasitically exploit host chaperones in their life cycle. The HSP90 chaperone protein and its cochaperone Hop have both individually been shown to be essential factors for Kaposi sarcoma-associated herpesvirus (KSHV) lytic replication. Given the fundamental regulatory role that protein-protein interactions (PPIs) play in cellular biology, we reasoned that disrupting the Hop-HSP90 PPI may provide a new host-based target for inhibiting KSHV lytic replication.
View Article and Find Full Text PDFRealization of topological quantum states in carbon nanostructures has recently emerged as a promising platform for hosting highly coherent and controllable quantum dot spin qubits. However, their adjustable manipulation remains elusive. Here, we report the atomically accurate control of the hybridization level of topologically protected quantum edge states emerging from topological interfaces in bottom-up-fabricated π-conjugated polymers.
View Article and Find Full Text PDF