Publications by authors named "B L Leitch"

Understanding the molecular mechanisms underlying the generation of absence seizures is crucial for developing effective, patient-specific treatments for childhood absence epilepsy (CAE). Currently, one-third of patients remain refractive to the antiseizure medications (ASMs), previously called antiepileptic drugs (AEDs), available to treat CAE. Additionally, these ASMs often produce serious side effects and can even exacerbate symptoms in some patients.

View Article and Find Full Text PDF

Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures.

View Article and Find Full Text PDF

Childhood absence epilepsy seizures arise in the cortico-thalamocortical network due to multiple cellular and molecular mechanisms, which are still under investigation. Understanding the precise mechanisms is imperative given that treatment fails in ~30% of patients while adverse neurological sequelae remain common. Impaired GABAergic neurotransmission is commonly reported in research models investigating these mechanisms.

View Article and Find Full Text PDF

Absence seizures are hyperexcitations within the cortico-thalamocortical (CTC) network, however the underlying causative mechanisms at the cellular and molecular level are still being elucidated and appear to be multifactorial. Dysfunctional feed-forward inhibition (FFI) is implicated as one cause of absence seizures. Previously, we reported altered excitation onto parvalbumin-positive (PV) interneurons in the CTC network of the stargazer mouse model of absence epilepsy.

View Article and Find Full Text PDF

Childhood absence epilepsy (CAE) is the most common pediatric epilepsy affecting 10-18% of all children with epilepsy. It is genetic in origin and the result of dysfunction within the corticothalamocortical (CTC) circuitry. Network dysfunction may arise from multifactorial mechanisms in patients from different genetic backgrounds and thus account for the variability in patient response to currently available anti-epileptic drugs; 30% of children with absence seizures are pharmaco-resistant.

View Article and Find Full Text PDF