Publications by authors named "B L Hisey"

There is currently an urgent need for the development of new antibacterial agents to combat the spread of antibiotic-resistant bacteria. We explored the synthesis and antibacterial activities of novel, sugar-functionalized phosphonium polymers. While these compounds exhibited antibacterial activity, we unexpectedly found that the control polymer poly(tris(hydroxypropyl)vinylbenzylphosphonium chloride) showed very high activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus and very low haemolytic activity against red blood cells.

View Article and Find Full Text PDF

Staphylococcus aureus is a predominant cause of fatal pneumonia following influenza A virus (IAV) infection. Herein we investigate the influence of antecedent IAV infection on S. aureus virulence gene expression.

View Article and Find Full Text PDF

The ability to manipulate block copolymers on the nanoscale has led to many scientific and technological advances. These include nanoscale ordered bulk and thin films and also solution phase components; these are promising materials for making smaller ordered electronics, selective membranes, and also biomedical applications. The ability to manipulate block copolymer material architectures on such small scales has risen from thorough investigations into the properties that affect the architectures.

View Article and Find Full Text PDF

New approaches to treat bacterial infections are badly needed to address the increasing problem of antibiotic resistance. This study explores phosphonium-functionalized block copolymer micelles as intrinsically antibacterial polymer assemblies. Phosphonium cations with varying alkyl lengths were conjugated to the terminus of a poly(ethylene oxide)-polycaprolactone block copolymer, and the phosphonium-functionalized block copolymers were self-assembled to form micelles in aqueous solution.

View Article and Find Full Text PDF

The aim of this study was to investigate force depression in Type I and Type II muscle fibers. Experiments were performed using skinned fibers from rabbit soleus and psoas muscles. Force depression was quantified after active fiber shortening from an average sarcomere length (SL) of 3.

View Article and Find Full Text PDF