Publications by authors named "B L Fabbri"

Two structurally unrelated small molecule chemotypes, represented by compounds PAV-617 and PAV-951, with antiviral activity in cell culture against Mpox virus (formerly known as monkeypox virus) and human immunodeficiency virus (HIV) respectively, were studied for anti-cancer efficacy. Each exhibited apparent pan-cancer cytotoxicity with reasonable pharmacokinetics. Non-toxicity is demonstrated in a non-cancer cell line and in mice at doses achieving drug exposure at active concentrations.

View Article and Find Full Text PDF
Article Synopsis
  • * A new phosphorene-based sensor for hydrogen detection was created by chemically modifying phosphorene with urea, leading to a stable, air-resistant material suitable for gas sensing applications.
  • * The developed sensor showed impressive performance, with high sensitivity to hydrogen (up to 700 ppm) and maintained long-term stability for five months in normal conditions, with further studies conducted to understand its gas sensing mechanism.
View Article and Find Full Text PDF

Health and safety considerations of indoor occupants in enclosed spaces are crucial for building management which involves the strict control and monitoring of carbon dioxide levels to maintain acceptable air quality standards. For this study, we developed a wireless, noninvasive, and portable platform for the continuous monitoring of carbon dioxide concentration in enclosed environments, i.e.

View Article and Find Full Text PDF

Hazardous substances produced by anthropic activities threaten human health and the green environment. Gas sensors, especially those based on metal oxides, are widely used to monitor toxic gases with low cost and efficient performance. In this study, electron beam lithography with two-step exposure was used to minimize the geometries of the gas sensor hotplate to a submicron size in order to reduce the power consumption, reaching 100 °C with 0.

View Article and Find Full Text PDF

Recently, the influence of Nb addition in the oxide solid solution of Sn and Ti was investigated with regard to the morphological, structural and electrical properties for the production of chemoresistive gas sensors. (Sn,Ti,Nb)O-based sensors showed promising features for ethanol monitoring in commercial or industrial settings characterized by frequent variation in relative humidity. Indeed, the three-metal solid solution highlighted a higher response level vs.

View Article and Find Full Text PDF