Publications by authors named "B L Caputto"

Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV.

View Article and Find Full Text PDF

Tumors of the nervous system including glioblastoma multiforme (GBM) are the most frequent and aggressive form of brain tumors; however, little is known about the impact of the circadian timing system on the formation, growth, and treatment of these tumors. We investigated day/night differences in tumor growth after injection of A530 glioma cells isolated from malignant peripheral nerve sheath tumor (MPNSTs) of NPcis (Trp53 ; Nf1 ) mice. Synchronized A530 cell cultures expressing typical glial markers were injected at the beginning of the day or night into the sciatic nerve zone of C57BL/6 mice subject to a 12:12 hours light/dark (LD) cycle or after being released to constant darkness (DD).

View Article and Find Full Text PDF

Glioblastoma is the most severe form of brain cancer. Despite multimodal therapy combining surgery, radiotherapy and chemotherapy, prognosis of patients is dismal. It has been observed that the surgical resection guided by photosensitizer fluorescence followed by photodynamic therapy (PDT) prolongs the average survival in patients with glioblastoma.

View Article and Find Full Text PDF

Glioblastoma multiforme is the most aggressive type of tumor of the CNS with an overall survival rate of approximately one year. Since this rate has not changed significantly over the last 20 years, the development of new therapeutic strategies for the treatment of these tumors is peremptory. The over-expression of the proto-oncogene c-Fos has been observed in several CNS tumors including glioblastoma multiforme and is usually associated with a poor prognosis.

View Article and Find Full Text PDF

Differentiation of neuronal cells is crucial for the development and function of the nervous system. This process involves high rates of membrane expansion, during which the synthesis of membrane lipids must be tightly regulated. In this work, using a variety of molecular and biochemical assays and approaches, including immunofluorescence microscopy and FRET analyses, we demonstrate that the proto-oncogene c-Fos (c-Fos) activates cytoplasmic lipid synthesis in the central nervous system and thereby supports neuronal differentiation.

View Article and Find Full Text PDF