Publications by authors named "B L'heureux"

In the brain, sensory stimulation activates distributed populations of neurons among functional modules which participate to the coding of the stimulus. Functional optical imaging techniques are advantageous to visualize the activation of these modules in sensory cortices with high spatial resolution. In this context, endogenous optical signals that arise from molecular mechanisms linked to neuroenergetics are valuable sources of contrast to record spatial maps of sensory stimuli over wide fields in the rodent brain.

View Article and Find Full Text PDF

The brain transforms clues from the external world, the sensory stimuli, into activities in neuroglial networks. These circuits are activated in specialized sensory cortices where specific functional modules are responsible for the spatiotemporal coding of the stimulus. A major challenge in the neuroscience field has been to image the spatial distribution and follow the temporal dynamics of the activation of such large populations in vivo.

View Article and Find Full Text PDF

There has been recently a renewed interest in using Autofluorescence imaging (AF) of NADH and flavoproteins (Fp) to map brain activity in cortical areas. The recording of these cellular signals provides complementary information to intrinsic optical imaging based on hemodynamic changes. However, which of NADH or Fp is the best candidate for AF functional imaging is not established, and the temporal profile of AF signals is not fully understood.

View Article and Find Full Text PDF