The vibronic theory of chemical activation and quantum chemical calculations are applied to calculate the stretching vibrational frequency of cyanide, coordinated by the complex of ferric porphyrin with imidazole. The results show that the frequency of the stretching vibration of the cyanide strongly depends on its coordination geometry and is hardly affected by the electrostatic perturbations of reasonable magnitude. The comparison of these results with the experimental data on the cyanide complexes of different heme proteins and their models allows to elucidate the cyanide coordination geometry.
View Article and Find Full Text PDFThe quantum chemical calculations, vibronic theory of activation, and London-Pople approach are used to study the dependence of the C-O vibrational frequency, 17O isotropic chemical shift, and nuclear quadrupole coupling constant on the distortion of the porphyrin ring and geometry of the CO coordination, changes in the iron-carbon and iron-imidazole distances, magnitude of the iron displacement out of the porphyrin plane, and presence of the charged groups in the heme environment. It is shown that only the electrostatic interactions can cause the variation of all these parameters experimentally observed in different heme proteins, and the heme distortions could modulate this variation. The correlations between the theoretically calculated parameters are shown to be close to the experimentally observed ones.
View Article and Find Full Text PDFThe cyanide complex of FeIIMb prepared and maintained at temperatures below 0 degrees C is sufficiently stable to permit spectroscopic characterization and allow comparison with free HCN and other ferric and ferrous CN complexes. The visible absorption spectrum of FeIIMb-CN has a split alpha band maxima at 571 and 563 nm, suggesting distortion in the x-y plane of the porphyrin. FeIIMb-CN, like the CO complex, was found to be optically active by circular dichroism.
View Article and Find Full Text PDFThe vibronic theory of activation and quantum chemical intermediate neglect of differential overlap (INDO) calculations are used to study the activation of carbon monoxide (change of the C-O bond index and force field constant) by the imidazole complex with heme in dependence on the distortion of the porphyrin ring, geometry of the CO coordination, iron-carbon and iron-imidazole distances, iron displacement out of the porphyrin plane, and presence of the charged groups in the heme environment. It is shown that the main contribution to the CO activation stems from the change in the sigma donation from the 5 sigma CO orbital to iron, and back-bonding from the iron to the 2 pi orbital of CO. It follows from the results that none of the studied distortions can explain, by itself, the wide variation of the C-O vibrational frequency in the experimentally studied model compounds and heme proteins.
View Article and Find Full Text PDF