This case study explores the applicability of transcriptome data to characterize a common mechanism of action within groups of short-chain aliphatic α-, β-, and γ-diketones. Human reference data indicate that the α-diketone diacetyl induces bronchiolitis obliterans in workers involved in the preparation of microwave popcorn. The other three α-diketones induced inflammatory responses in preclinical animal studies, whereas beta and gamma diketones in addition caused neuronal effects.
View Article and Find Full Text PDFIntroduction: Intrauterine growth restriction (IUGR) is a well-known cause of impaired neurodevelopment during life. In this study, we aimed to characterize alterations in neuronal development underlying IUGR and discover strategies to ameliorate adverse neurodevelopment effects by using a recently established rabbit in vitro neurosphere culture.
Methods: IUGR was surgically induced in pregnant rabbits by ligation of placental vessels in one uterine horn, while the contralateral horn remained unaffected for normal growth (control).
Following a multi-disciplinary approach integrating information from several experimental models we have collected new evidence supporting, expanding and redesigning the AOP "Disrupted laminin/int-β1 interaction leading to decreased cognitive function". Investigations in vitro in rabbit and rat neurospheres and in vivo in mice exposed to EGCG (epigallocatechin-gallate) during neurodevelopment are combined with in vitro evaluations in neural progenitor cells overexpressing int-β1 and literature information from int-β1 deficiency models. We have discovered for the first time that neural progenitor cells from intrauterine growth restricted (IUGR) animals overexpress int-β1 at gene and protein level and due to this change in prenatal brain programming they respond differently than control neurospheres to the exposure of EGCG, a compound triggering neural progenitor cell migration alterations.
View Article and Find Full Text PDF