Publications by authors named "B Kueng"

How rapidly natural selection sorts genome-wide standing genetic variation during adaptation remains largely unstudied experimentally. Here, we present a genomic release-recapture experiment using paired threespine stickleback fish populations adapted to selectively different lake and stream habitats. First, we use pooled whole-genome sequence data from the original populations to identify hundreds of candidate genome regions likely under divergent selection between these habitats.

View Article and Find Full Text PDF

A promising approach for the treatment of nonalcoholic steatohepatitis (NASH) is the inhibition of enhanced hepatic lipogenesis (DNL), which is the synthesis of fatty acids from nonlipid sources. This study assesses three approaches to DNL suppression in a newly developed dietary NASH mouse model: i) dietary intervention (switch from NASH-inducing diet to normal diet); ii) inhibition of acetyl-coenzyme A carboxylase (ACC), the enzyme catalyzing the rate-limiting step in DNL; and iii) activation of farnesoid X receptor (FXR), a major transcriptional regulator of DNL. C57BL/6J mice on a high-fat diet combined with consumption of a fructose-sucrose solution developed several of the liver histologic features seen in human disease, including steatosis, inflammation, and fibrosis, accompanied by elevated fibrosis biomarkers and liver injury enzymes.

View Article and Find Full Text PDF

Dipeptidyl peptidase 9 (DPP9) is a ubiquitously expressed intracellular prolyl peptidase implicated in immunoregulation. However, its physiological relevance in the immune system remains largely unknown. We investigated the role of DPP9 enzyme in immune system by characterizing DPP9 knock-in mice expressing a catalytically inactive S729A mutant of DPP9 enzyme (DPP9 mice).

View Article and Find Full Text PDF

Dipeptidyl peptidase 9 (DPP9) is an intracellular N-terminal post-proline-cleaving enzyme whose physiological function remains largely unknown. We investigated the role of DPP9 enzyme in vivo by characterizing knock-in mice expressing a catalytically inactive mutant form of DPP9 (S729A; DPP9 mice). We show that DPP9 mice die within 12-18h after birth.

View Article and Find Full Text PDF