ACS Appl Mater Interfaces
May 2024
With the specter of accelerating climate change, securing access to potable water has become a critical global challenge. Atmospheric water harvesting (AWH) through metal-organic frameworks (MOFs) emerges as one of the promising solutions. The standard numerical methods applied for rapid and efficient screening for optimal sorbents face significant limitations in the case of water adsorption (slow convergence and inability to overcome high energy barriers).
View Article and Find Full Text PDFThe hase behavior of confined fluids adsorbed in nanopores differs significantly from their bulk counterparts and depends on the chemical and structural properties of the confining structures. In general, phase transitions in nanoconfined fluids are reflected in stepwise adsorption isotherms with a pronounced hysteresis. Here, we show experimental evidence and an interpretation of the reversible stepwise adsorption isotherm which is observed when methane is adsorbed in the rigid, crystalline metal-organic framework IRMOF-1 (MOF-5).
View Article and Find Full Text PDFNanoporous carbons remain the most promising candidates for effective hydrogen storage by physisorption in currently foreseen hydrogen-based scenarios of the world's energy future. An optimal sorbent meeting the current technological requirement has not been developed yet. Here we first review the storage limitations of currently available nanoporous carbons, then we discuss possible ways to improve their storage performance.
View Article and Find Full Text PDF