Publications by authors named "B Kuang"

In this study, we investigated in detail the regulation mechanism of electron transfer under laser-induced breakdown (LIB) on weak O-D stimulated Raman scattering (SRS) in DMSO-DO solutions. Significantly, the Raman activity of O-D vibrations was greatly enhanced by two orders of magnitude due to electron transfer in DMSO molecules. Density functional theory (DFT) calculations showed that the O-D Raman activity was significantly enhanced in the DMSO-DO dimer compared to the DO dimer.

View Article and Find Full Text PDF

Background: The addition of durvalumab or pembrolizumab to gemcitabine and cisplatin (GP) has been approved to statistically improve survival outcomes in patients with advanced biliary tract cancer. However, since the survival time was only prolonged by about two months, doubts have been raised. In this analysis, we aimed to evaluate the efficacy of combining durvalumab or pembrolizumab with GP chemotherapy.

View Article and Find Full Text PDF

Cell signaling pathways are enriched for biological processes crucial for cellular communication, response to external stimuli, and metabolism. Here, a cell signaling-focused CRISPR screen identified cytochrome c oxidase subunit 4 isoform 1 (COX4I1) as a novel vulnerability in acute myeloid leukemia (AML). Depletion of COX4I1 hindered leukemia cell proliferation and impacted in vivo AML progression.

View Article and Find Full Text PDF

Herein, we describe a reliable and efficient approach for the first chemical synthesis of biologically significant and complex 3--(-3-hydroxydecanoyl) modified uridine diphosphate -acetylglucosamine that is the native substrate of LpxC involved in the biosynthesis of the cell wall of . The synthetic protocol provides a successful example for the reliable preparation of modified nucleoside diphosphate sugar, which features judiciously selected protecting groups, the formation of pyrophosphate linkage with 5'-phosphate nucleoside as nucleophile, and the straightforward purification process.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) therapy, while promising for cancer treatment, faces challenges like unexpected side effects and limited objective responses. Here, we develop an in vivo gene-editing strategy for improving ICB cancer therapy in a lastingly effective manner. The approach uses a conductive hydrogel-based electroporation system to enable nucleofection of programmed cell death protein 1 (PD1) targeted CRISPR-Cas9 DNAs into T-cells directly within the lymph nodes, and subsequently produces PD1-deficient T-cells to combat tumor growth, metastasis and recurrence in different melanoma models in mice.

View Article and Find Full Text PDF