Publications by authors named "B Klarin"

This research addresses and resolves current challenges in meshless Lagrangian methods for simulating viscoelastic materials. A split-step scheme, or pressure Poisson reformulation of the Navier-Stokes equations, is introduced for incompressible viscoelastic flows in a Lagrangian context. The Lagrangian differencing dynamics (LDD) method, which is a thoroughly validated Lagrangian method for Newtonian and non-Newtonian incompressible flows, is extended to solve the introduced split-step scheme to simulate viscoelastic flows based on the Oldroyd-B constitutive model.

View Article and Find Full Text PDF

An inserted central venous catheter (CVC) is considered foreign material by the inert host defence systems and induce inflammation and thrombus formation. The objective of this study was to evaluate blood compatibility of six commonly used CVCs. Three coated and three uncoated CVC materials were tested in a modified Chandler loop model.

View Article and Find Full Text PDF

Background: Disturbance in the oropharyngeal microbiota is common in hospitalized patients and contributes to the development of nosocomial pneumonia. Lactiplantibacillus plantarum 299 and 299v (Lp299 and Lp299v) are probiotic bacteria with beneficial effects on the human microbiome.

Aim: To investigate how Lp299 and Lp299v affect the growth of nosocomial oropharyngeal pathogens in vitro and to evaluate the efficacy in vivo when these probiotics are administered prophylactically in hospitalized patients.

View Article and Find Full Text PDF

The aim of this study was to investigate the appearance of a disturbed oropharyngeal microbiota during hospitalization and explore the patient characteristics that maybe associated with such a disturbance. Oropharyngeal swabs were collected from 134 patients at hospital admission and every 3-4 days thereafter. The samples were cultivated to determine the presence of a disturbed microbiota, which, in turn, was subcategorized into respiratory tract pathogens, gut microbiota and yeast species.

View Article and Find Full Text PDF

Background: Biofilm formation on endotracheal tubes (ETTs) is an early and frequent event in mechanically ventilated patients. The biofilm is believed to act as a reservoir for infecting microorganisms and thereby contribute to development and relapses of ventilator-associated pneumonia (VAP). Once a biofilm has formed on an ETT surface, it is difficult to eradicate.

View Article and Find Full Text PDF