Publications by authors named "B Keren"

Pathogenic heterozygous variants in CHD4 cause Sifrim-Hitz-Weiss syndrome, a neurodevelopmental disorder associated with brain anomalies, heart defects, macrocephaly, hypogonadism, and additional features with variable expressivity. Most individuals have non-recurrent missense variants, complicating variant interpretation. A few were reported with truncating variants, and their role in disease is unclear.

View Article and Find Full Text PDF

BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.

View Article and Find Full Text PDF

Objective: Monoallelic variants in the transient receptor potential melastatin-related type 3 gene (TRPM3) have been associated with neurodevelopmental manifestations, but knowledge on the clinical manifestations and treatment options is limited. We characterized the clinical spectrum, highlighting particularly the epilepsy phenotype, and the effect of treatments.

Methods: We analyzed retrospectively the phenotypes and genotypes of 43 individuals with TRPM3 variants, acquired from GeneMatcher and collaborations (n = 21), and through a systematic literature search (n = 22).

View Article and Find Full Text PDF

While mostly de novo truncating variants in SCAF4 were recently identified in 18 individuals with variable neurodevelopmental phenotypes, knowledge on the molecular and clinical spectrum is still limited. We assembled data on 50 novel individuals with SCAF4 variants ascertained via GeneMatcher and personal communication. With detailed evaluation of clinical data, in silico predictions and structural modeling, we further characterized the molecular and clinical spectrum of the autosomal dominant SCAF4-associated neurodevelopmental disorder.

View Article and Find Full Text PDF
Article Synopsis
  • - Genetic generalized epilepsy (GGE) includes types like childhood absence epilepsy and juvenile myoclonic epilepsy, showing a higher risk of occurrence in first-degree relatives of affected individuals, suggesting a strong genetic component.
  • - Research, including whole exome sequencing from families in Sudan, has identified specific genetic variants linked to GGE, indicating it is genetically diverse and likely influenced by multiple genes rather than a single cause.
  • - The study emphasizes the importance of examining familial cases, as well as using populations with unique genetic backgrounds, to better understand the complex genetics of GGE, reinforcing the idea that it may have oligogenic inheritance patterns.
View Article and Find Full Text PDF