A hidden state in which a spin does not interact with any other spin contributes to the entropy of an interacting spin system. We explore the q-state Potts model with extra r hidden states using the Ginzburg-Landau formalism in the mean-field limit. We analytically demonstrate that when 1 View Article and Find Full Text PDF
The mean first passage time (MFPT) of random walks is a key quantity characterizing dynamic processes on disordered media. In a random fractal embedded in the Euclidean space, the MFPT is known to obey the power law scaling with the distance between a source and a target site with a universal exponent. We find that the scaling law for the MFPT is not determined solely by the distance between a source and a target but also by their locations.
View Article and Find Full Text PDFRecent advances in machine learning (ML) have facilitated its application to a wide range of systems, from complex to quantum. Reservoir computing algorithms have proven particularly effective for studying nonlinear dynamical systems that exhibit collective behaviors, such as synchronizations and chaotic phenomena, some of which still remain unclear. Here, we apply ML approaches to the Kuramoto model to address several intriguing problems, including identifying the transition point and criticality of a hybrid synchronization transition, predicting future chaotic behaviors, and understanding network structures from chaotic patterns.
View Article and Find Full Text PDFCascading failures in electrical power grids, comprising nodes and links, propagate nonlocally. After a local disturbance, successive resultant can be distant from the source. Since avalanche failures can propagate unexpectedly, care must be taken when formulating a mitigation strategy.
View Article and Find Full Text PDFIdentical oscillators in the chimera state exhibit a mixture of coherent and incoherent patterns simultaneously. Nonlocal interactions and phase lag are critical factors in forming a chimera state within the Kuramoto model in Euclidean space. Here, we investigate the contributions of nonlocal interactions and phase lag to the formation of the chimera state in random networks.
View Article and Find Full Text PDF