Reactive oxygen species (ROS)-mediated damage to macromolecules and cellular organelles is one of the major causes of senescence. Therapeutic strategies that lower ROS levels have been proposed as important treatments for senescence, but effective mechanisms for reducing ROS levels have not been discovered. Here, we aimed to find a combination that has a synergistic effect on ROS reduction using senomorphics known to reduce ROS.
View Article and Find Full Text PDFL. cultivar Dangjo (DJ), developed as a novel crop, possesses potential health benefits, such as reducing blood glucose levels. DJ contains flavonoid glycosides, bioactive compounds that have been found in various plants and have promising pharmacological effects.
View Article and Find Full Text PDFFront Sports Act Living
October 2024
The patho-mechanism of apolipoprotein variant, APOE4, the strongest genetic risk for late-onset Alzheimer's disease (AD) and longevity, remains unclear. APOE's neighboring gene, TOMM40 (mitochondria protein transport channel), is associated with brain trauma outcome and aging-related cognitive decline, however its role in AD APOE4-independently is controversial. We report that TOMM40 is prone to transcription readthrough into APOE that can generate spliced TOMM40-APOE mRNA chimera (termed T9A2) detected in human neurons and other cells and tissues.
View Article and Find Full Text PDF