Converging evidence indicates that impairments in executive function and information-processing speed limit quality of life and social reentry after moderate-to-severe traumatic brain injury (msTBI). These deficits reflect dysfunction of frontostriatal networks for which the central lateral (CL) nucleus of the thalamus is a critical node. The primary objective of this feasibility study was to test the safety and efficacy of deep brain stimulation within the CL and the associated medial dorsal tegmental (CL/DTTm) tract.
View Article and Find Full Text PDFThe thalamus is a central integration structure in the brain, receiving and distributing information among the cerebral cortex, subcortical structures, and the peripheral nervous system. Prior studies clearly show that the thalamus atrophies in cognitively unimpaired aging. However, the thalamus is comprised of multiple nuclei involved in a wide range of functions, and the age-related atrophy of individual thalamic nuclei remains unknown.
View Article and Find Full Text PDFObjectives: Investigating differential vulnerability of thalamic nuclei in multiple sclerosis (MS).
Methods: In a secondary analysis of prospectively collected datasets, we pooled 136 patients with MS or clinically isolated syndrome and 71 healthy controls all scanned with conventional 3D-T1 and white-matter-nulled magnetization-prepared rapid gradient echo (WMn-MPRAGE) and tested for cognitive performance. T1-based thalamic segmentation was compared with the reference WMn-MPRAGE method.
Diagn Interv Imaging
September 2022
Purpose: Characterizing orbital lesions remains challenging with imaging. The purpose of this study was to compare 3 Tesla (T) to 7 T magnetic resonance imaging (MRI) for characterizing orbital lesions.
Materials And Methods: This prospective single-center study enrolled participants presenting with orbital lesions from May to October 2019, who underwent both 7 T and 3 T MRI examinations.
Thalamic nuclei play critical roles in regulation of neurological functions like sleep and wakefulness. They are increasingly implicated in neurodegenerative and neurological diseases such as multiple sclerosis and essential tremor. However, segmentation of thalamic nuclei is difficult due to their poor visibility in conventional MRI scans.
View Article and Find Full Text PDF