Publications by authors named "B K Klink"

Article Synopsis
  • The black widow spider's venom contains a range of neurotoxic latrotoxins (LTXs), with the most significant one being α-LTX, which affects vertebrates by disrupting neurotransmitter release at nerve terminals.
  • α-LTX is composed of multiple structural domains and functions by forming tetramers that create calcium-conductive pores in the presynaptic membrane, although the exact mechanism is not fully understood.
  • New cryo-electron microscopy (cryoEM) studies reveal structural changes in α-LTX that allow it to insert into membranes and form cation-permeable channels, providing insights that could lead to new medical and technological advancements.
View Article and Find Full Text PDF
Article Synopsis
  • Genetic alterations play a crucial role in cancer development, highlighting the need for effective genetic counselling to support patient decision-making in EU Member States.
  • A study of national legislation across 27 EU countries revealed that 22 have laws on genetic counselling, but practices and regulations differ significantly.
  • Common barriers include workforce capacity and genetic literacy, with calls for better integration of genetic counsellors and updated laws to improve the overall practice.
View Article and Find Full Text PDF

Background: A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials.

View Article and Find Full Text PDF

Background: Extensive local invasion of glioblastoma (GBM) cells within the central nervous system (CNS) is one factor that severely limits current treatments. The aim of this study was to uncover genes involved in the invasion process, which could also serve as therapeutic targets. For the isolation of invasive GBM cells from non-invasive cells, we used a three-dimensional organotypic co-culture system where glioma stem cell (GSC) spheres were confronted with brain organoids (BOs).

View Article and Find Full Text PDF