By modifying polymer compositions and cross-linking reagents, we have developed a simple yet effective manufacturing strategy for copolymerized three-dimensional gel element arrays. A new gel-forming monomer, 2-(hydroxyethyl) methacrylamide (HEMAA), was used. HEMAA possesses low volatility and improves the stability of copolymerized gel element arrays to on-chip thermal cycling procedures relative to previously used monomers.
View Article and Find Full Text PDFSurface plasmon excitation by normally incident light on surface-relief metallic diffraction gratings is studied numerically. Predominantly unidirectional excitation is achieved with a grating of either a slanted lamellar or an inclined sinusoidal groove profile, both having shallow depths. Maps of Poynting vector illustrate that the energy flow turns from normal incidence in the far-field region to a pattern almost parallel to the grating surface in the required direction of excitation of a single SPP wave.
View Article and Find Full Text PDFA 16S rRNA-targeted tunable bead array was developed and used in a retrospective analysis of metal- and sulfate-reducing bacteria in contaminated subsurface sediments undergoing in situ U(VI) bioremediation. Total RNA was extracted from subsurface sediments and interrogated directly, without a PCR step. Bead array validation studies with total RNA derived from 24 isolates indicated that the behavior and response of the 16S rRNA-targeted oligonucleotide probes could not be predicted based on the primary nucleic acid sequence.
View Article and Find Full Text PDFA genome-independent microarray and new statistical techniques were used to genotype Bacillus strains and quantitatively compare DNA fingerprints with the known taxonomy of the genus. A synthetic DNA standard was used to understand process level variability and lead to recommended standard operating procedures for microbial forensics and clinical diagnostics.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2005
Past studies have suggested that thermal dissociation analysis of nucleic acids hybridized to DNA microarrays would improve discrimination among duplex types by scanning through a broad range of stringency conditions. To more fully constrain the utility of this approach using a previously described gel-pad microarray format, artificial neural networks (NNs) were trained to recognize noisy or low-quality data, as might derive from nonspecific fluorescence, poor hybridization, or compromised data collection. The NNs were trained to classify dissociation profiles (melts) into groups based on selected characteristics (e.
View Article and Find Full Text PDF