Context: With the union of machine learning (ML) and quantum chemistry, amid the debate between machine-learned functionals and human-designed functionals in density functional theory (DFT), this paper aims to demonstrate the generation of potential energy surfaces using computations with machine-learned density functional approximation (ML-DFA). A recent research trend is the application of ML in quantum sciences in the design of density functionals such as DeepMind's Deep Learning model (DeepMind21, DM21). Though science reported the state-of-the-art performance of DM21, the opportunity to utilize DeepMind's pretrained DM21 neural networks in computations in quantum chemistry has not yet been tapped.
View Article and Find Full Text PDF