Publications by authors named "B Jesus"

Background: Although rare, vaccine-induced thrombotic thrombocytopenia (VITT) following adenoviral vector COVID-19 vaccination is a concerning and often severe adverse effect of vaccination. The generation of high antiplatelet factor 4 antibody titers promotes the formation of immune complexes capable of activating platelets and neutrophils through FcγRIIa.

Objectives: Given that platelet-leukocyte aggregate formation and inflammasome activation are common features of thromboinflammatory diseases, we aimed to evaluate if these are also features of VITT.

View Article and Find Full Text PDF

Heart disease is the leading cause of mortality in developed countries, and novel regenerative procedures are warranted. Direct cardiac conversion (DCC) of adult fibroblasts can create induced cardiomyocytes (iCMs) for gene and cell-based heart therapy, and in addition to holding great promise, still lacks effectiveness as metabolic and age-associated barriers remain elusive. Here, by employing MGT (Mef2c, Gata4, Tbx5) transduction of mouse embryonic fibroblasts (MEFs) and adult (dermal and cardiac) fibroblasts from animals of different ages, we provide evidence that the direct reprogramming of fibroblasts into iCMs decreases with age.

View Article and Find Full Text PDF

Marine water temperatures are increasing due to anthropogenic climate change, constituting a major threat to marine ecosystems. Diatoms are major marine primary producers, and as such, they are subjected to marine heat waves and rising ocean temperatures. Additionally, under low tide, diatoms are regularly exposed to high temperatures.

View Article and Find Full Text PDF

Two recent seminal works have untangled the intricate role of tumor-associated senescent cells in cancer progression, or regression, by guiding our immune system against cancer cells. The characterization of these unique, yet diverse cell populations, should be considered, particularly when contemplating the use of senolytics, which are drugs that selectively eliminate senescent cells, in a cancer framework. Here, we will describe the current knowledge in this field.

View Article and Find Full Text PDF

This work examines the current landscape of drug discovery and development, with a particular focus on the chemical and pharmacological spaces. It emphasizes the importance of understanding these spaces to anticipate future trends in drug discovery. The use of cheminformatics and data analysis enabled in silico exploration of these spaces, allowing a perspective of drugs, approved drugs after 2020, and clinical candidates, which were extracted from the newly released ChEMBL34 (March 2024).

View Article and Find Full Text PDF