Why a systems analysis view of this pandemic? The current pandemic has inflicted almost unimaginable grief, sorrow, loss, and terror at a global scale. One of the great ironies with the COVID-19 pandemic, particularly early on, is counter intuitive. The speed at which specialized basic and clinical sciences described the details of the damage to humans in COVID-19 disease has been impressive.
View Article and Find Full Text PDFSARS-CoV-2 interacting with its receptor, angiotensin-converting enzyme 2 (ACE2), turns the host response to viral infection into a dysregulated uncontrolled inflammatory response. This is because ACE2 limits the production of the peptide angiotensin II (Ang II) and SARS-CoV-2, through the destruction of ACE2, allows the uncontrolled production of Ang II. Recovery from trauma requires activation of both a tissue response to injury and activation of a whole-body response to maintain tissue perfusion.
View Article and Find Full Text PDFInfection of humans with SARS-CoV-2 virus causes a disease known colloquially as "COVID-19" with symptoms ranging from asymptomatic to severe pneumonia. Initial pathology is due to the virus binding to the ACE-2 protein on endothelial cells lining blood vessels and entering these cells in order to replicate. Viral replication causes oxidative stress due to elevated levels of reactive oxygen species.
View Article and Find Full Text PDFWe previously reported that a lipophilic N-(4'-hydroxy-3',5'-di-tert-butylbenzyl) derivative (1) of the voltage-gated sodium channel blocker mexiletine, was a more potent sodium channel blocker in vitro and in vivo. We demonstrate that replacing the chiral methylethylene linker between the amine and di-tert-butylphenol with an achiral 1,3-propylene linker (to give (2)) maintains potency in vitro. We synthesized 25 analogues bearing the 1,3-propylene linker and found that minor structural changes resulted in pronounced changes in state dependence of blocking human Na 1.
View Article and Find Full Text PDFTacrine was initially synthesised in 1945 as part of a project seeking antibacterial drugs to treat infected wounds in soldiers. However, it was inactive in vitro against common strains of bacteria. Serendipitously, it was injected in vivo into dogs anaesthetised with chloroform and morphine and noted to immediately counter the respiratory rate depression caused by morphine but not block analgesia.
View Article and Find Full Text PDF