Publications by authors named "B Jalali"

Bandwidth and noise are fundamental considerations in all communication and signal processing systems. The group-velocity dispersion of optical fibers creates nulls in their frequency response, limiting the bandwidth and hence the temporal response of communication and signal processing systems. Intensity noise is often the dominant optical noise source for semiconductor lasers in data communication.

View Article and Find Full Text PDF

Photothermal therapy based on plasmonic gold nanoparticles is considered a promising approach for cancer treatment. Here, we investigate the in vitro photothermal effect of 30-nm gold nanoparticles, optically excited with a 532-nm continuous laser, on the U87MG malignant glioblastoma cells, and demonstrate the role of nanoparticle concentration and exposure power density in achieving its optimum performance. Laser-induced collective oscillation of electrons in plasmonic gold nanoparticles is employed to generate localized heat to denature tumor cells.

View Article and Find Full Text PDF

A molecular interaction between maternal endometrium and implanting conceptus can lead to activation of a variety of transcription factors that regulate expression of several genes necessary for the process of embryo implantation. While, signal transducer and activator of transcription 3 (STAT3) is responsible for decidualization and epithelial remodeling in humans and mice, its role in porcine endometrium has not been explored before. In the present study, we observed a pregnancy dependent increase in gene and protein expression of STAT3.

View Article and Find Full Text PDF

Recording electric field evolution in single-shot with THz bandwidth is needed in science including spectroscopy, plasmas, biology, chemistry, Free-Electron Lasers, accelerators, and material inspection. However, the potential application range depends on the possibility to achieve sub-picosecond resolution over a long time window, which is a largely open problem for single-shot techniques. To solve this problem, we present a new conceptual approach for the so-called spectral decoding technique, where a chirped laser pulse interacts with a THz signal in a Pockels crystal, and is analyzed using a grating optical spectrum analyzer.

View Article and Find Full Text PDF

Spectral interferometry is utilized in a wide range of biomedical and scientific applications and metrology. Retrieving the magnitude and phase of the complex electric field from the interferogram is central to all its applications. We report a spectral interferometry system that utilizes a neural network to infer the magnitude and phase of femtosecond interferograms directly from the measured single-shot interference patterns and compare its performance with the widely used Hilbert transform.

View Article and Find Full Text PDF