Plant somatic cells can be reprogrammed into totipotent embryonic cells that are able to form differentiated embryos in a process called somatic embryogenesis (SE), by hormone treatment or through overexpression of certain transcription factor genes, such as BABY BOOM (BBM). Here we show that overexpression of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED 15 (AHL15) gene induces formation of somatic embryos on Arabidopsis thaliana seedlings in the absence of hormone treatment. During zygotic embryogenesis, AHL15 expression starts early in embryo development, and AH15 and other AHL genes are required for proper embryo patterning and development beyond the globular stage.
View Article and Find Full Text PDFDeveloping smart crops which yield more biomass to meet the increasing demand for plant biomass has been an active area of research in last few decades. We investigated metabolic alterations in two Arabidopsis thaliana mutants with enhanced growth characteristics that were previously obtained from a collection of plant lines expressing artificial transcription factors. The metabolic profiles were obtained directly from intact Arabidopsis leaves using high-resolution magic angle spinning (HR-MAS) NMR.
View Article and Find Full Text PDFThe large majority of core photosynthesis proteins in plants are encoded by nuclear genes, but a small portion have been retained in the plastid genome. These plastid-encoded chloroplast proteins fulfill essential roles in the process of photochemistry. Here, we report the use of nuclear-encoded, chloroplast-targeted zinc finger artificial transcription factors (ZF-ATFs) with effector domains of prokaryotic origin to modulate the expression of chloroplast genes, and to enhance the photochemical activity and growth characteristics of Arabidopsis thaliana plants.
View Article and Find Full Text PDFTwo decades ago, it was discovered that the well-known plant vector Agrobacterium tumefaciens can also transform yeasts and fungi when these microorganisms are co-cultivated on a solid substrate in the presence of a phenolic inducer such as acetosyringone. It is important that the medium has a low pH (5-6) and that the temperature is kept at room temperature (20-25 °C) during co-cultivation. Nowadays, Agrobacterium-mediated transformation (AMT) is the method of choice for the transformation of many fungal species; as the method is simple, the transformation efficiencies are much higher than with other methods, and AMT leads to single-copy integration much more frequently than do other methods.
View Article and Find Full Text PDFBackground: The formation of crossovers during meiosis is pivotal for the redistribution of traits among the progeny of sexually reproducing organisms. In plants the molecular mechanisms underlying the formation of crossovers have been well established, but relatively little is known about the factors that determine the exact location and the frequency of crossover events in the genome. In the model plant species , research on these factors has been greatly facilitated by reporter lines containing linked fluorescence marker genes under control of promoters active in seeds or pollen, allowing for the visualization of crossover events by fluorescence microscopy.
View Article and Find Full Text PDF