Gene drive technology has the potential to address major biological challenges. Well-studied homing suppression drives have been shown to be highly efficient in Anopheles mosquitoes, but for other organisms, lower rates of drive conversion prevent elimination of the target population. To tackle this issue, we propose a gene drive design that has two targets: a drive homing site where drive conversion takes place, and a distant site where cleavage induces population suppression.
View Article and Find Full Text PDFAirborne triazole-resistant spores of the human fungal pathogen are a significant human health problem as the agricultural use of triazoles has been selecting for cross-resistance to life-saving clinical triazoles. However, how to quantify exposure to airborne triazole-resistant spores remains unclear. Here, we describe a method for cost-effective wide-scale outdoor air sampling to measure both spore abundance as well as antifungal resistance fractions.
View Article and Find Full Text PDFBackground: The transition to a climate neutral society such as that envisaged in the European Union Green Deal requires careful and comprehensive planning. Integrated assessment models (IAMs) and energy system optimisation models (ESOMs) are both commonly used for policy advice and in the process of policy design. In Europe, a vast landscape of these models has emerged and both kinds of models have been part of numerous model comparison and model linking exercises.
View Article and Find Full Text PDFAspergillus section Flavi (Flavi) is a diverse group of fungal species whose common members include A. flavus and A. parasiticus.
View Article and Find Full Text PDFIn this article we analyze how syngas produced in a renewable way can replace fossil-fuel based syngas production and thereby play an essential role in the decarbonization of industry. We show that in essentially all industrial applications renewable H and/or CO can replace syngas from fossil fuel feedstocks, and quantify the flows of these chemical building blocks required for the transformation of industry towards a net-zero emitting sector. We also undertake a techno-economic analysis, in which we demonstrate that under specific assumptions for the learning rates of some of the key process components, renewable syngas can become cost-competitive with that produced from fossil fuels.
View Article and Find Full Text PDF