Publications by authors named "B J Wiatrak"

Background/objective: The COVID-19 pandemic significantly disrupted healthcare systems worldwide including cancer diagnostics. This study aimed to assess the impact of the pandemic on histopathological cancer diagnostics in Lower Silesia, Poland, specifically focusing on prostate, breast, and colorectal cancer cases from 2018 to 2022. The objective was to evaluate diagnostic volumes and trends before, during, and after the pandemic and to understand the effect of healthcare disruptions on cancer detection.

View Article and Find Full Text PDF

L. (Malabar spinach, Basellaceae), widely consumed as a leafy vegetable, produces dark-colored fruits rich in betacyanins, including rare 6-glycosylated derivatives called gomphrenins. Comprehensive studies on the anti-inflammatory potential of its gomphrenin fraction (A) and crude extract (B) employed various analytical and biological methods.

View Article and Find Full Text PDF

The design of novel anti-inflammatory drugs remains a critical area of research in the development of effective treatments for inflammatory diseases. In this study, a series of 1,2-benzothiazine was evaluated through a multifaceted approach. In particular, we investigated the potential interactions of the potential drugs with lipid bilayers, an important consideration for membrane permeability and overall pharmacokinetics.

View Article and Find Full Text PDF
Article Synopsis
  • The study developed new compounds called 6-N-benzyloxazolo[5,4-d]pyrimidin-7(6H)-imines aimed at inhibiting the VEGFR2, a protein involved in cancer progression, and confirmed their structures using various scientific techniques.
  • Molecular docking simulations suggested that these new compounds could bind similarly to known VEGFR2 inhibitors, and preliminary tests showed that some derivatives were effective against different human cancer cell lines, comparable to the reference drug tivozanib.
  • Notably, the compound 3h was particularly effective against all cancer lines but also toxic to healthy cells, while derivatives 3b and 3f exhibited promising anti-cancer and anti
View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is one of the most aggressive and lethal brain tumors, characterized by rapid growth, invasiveness, and resistance to standard therapies, including surgery, chemotherapy, and radiotherapy. Despite advances in treatment, GBM remains highly resistant due to its complex molecular mechanisms, including angiogenesis, invasion, immune modulation, and lipid metabolism dysregulation. This review explores recent breakthroughs in targeted therapies, focusing on innovative drug carriers such as nanoparticles and liposomes, and their potential to overcome GBM's chemo- and radioresistant phenotypes.

View Article and Find Full Text PDF