Introduction: Receptor-interacting protein kinase 1 (RIPK1), a key mediator of inflammation through necroptosis and proinflammatory cytokine production, may play a role in the pathogenesis of immune-mediated inflammatory diseases such as chronic plaque psoriasis. An experimental medicine study of RIPK1 inhibition with GSK2982772 immediate-release formulation at doses up to 60 mg three times daily in mild to moderate plaque psoriasis indicated that efficacy may be improved with higher trough concentrations of GSK2982772.
Methods: This multicenter, randomized, double-blind, placebo-controlled, repeat-dose study (NCT04316585) assessed the efficacy, safety, pharmacokinetics, and pharmacodynamics of 960 mg GSK2982772 (once-daily modified-release formulation) in patients with moderate to severe plaque psoriasis.
Receptor-interacting serine/threonine protein kinase 2 (RIPK2) is an important kinase of the innate immune system. Herein, we describe the optimization of a series of RIPK2 PROTACs which recruit members of the inhibitor of apoptosis (IAP) family of E3 ligases. Our PROTAC optimization strategy focused on reducing the lipophilicity of the early lead which resulted in the identification of analogues with improved solubility and increased human and rat microsomal stability.
View Article and Find Full Text PDFJ Pharm Sci
October 2020
Receptor Interacting Protein 2 (RIP2) kinase inhibitors have been reported for therapeutic opportunities in inflammatory bowel diseases such as Ulcerative Colitis and Crohn's disease. During lead optimization, team identified 4-aminoquinoline series and several compounds from this series were investigated in rat and dog pharmacokinetic studies. While compounds such as GSKA and GSKB demonstrated acceptable pharmacokinetics in rat and dog, further progression of these compounds was halted due to adverse findings in advanced safety studies.
View Article and Find Full Text PDFProteolysis-Targeting Chimeras (PROTACs) are heterobifunctional small-molecules that can promote the rapid and selective proteasome-mediated degradation of intracellular proteins through the recruitment of E3 ligase complexes to non-native protein substrates. The catalytic mechanism of action of PROTACs represents an exciting new modality in drug discovery that offers several potential advantages over traditional small-molecule inhibitors, including the potential to deliver pharmacodynamic (PD) efficacy which extends beyond the detectable pharmacokinetic (PK) presence of the PROTAC, driven by the synthesis rate of the protein. Herein we report the identification and development of PROTACs that selectively degrade Receptor-Interacting Serine/Threonine Protein Kinase 2 (RIPK2) and demonstrate in vivo degradation of endogenous RIPK2 in rats at low doses and extended PD that persists in the absence of detectable compound.
View Article and Find Full Text PDF