The simulated noise used to benchmark wavelet edge detection in this work was described incorrectly. The correct description is given here, and new results based on noise that matches the original description are provided. The results support our original conclusion, which is that wavelet edge detection outperforms thresholding in the presence of white noise and 1/noise.
View Article and Find Full Text PDFThe operation of solid-state qubits often relies on single-shot readout using a nanoelectronic charge sensor, and the detection of events in a noisy sensor signal is crucial for high fidelity readout of such qubits. The most common detection scheme, comparing the signal to a threshold value, is accurate at low noise levels but is not robust to low-frequency noise and signal drift. We describe an alternative method for identifying charge sensor events using wavelet edge detection.
View Article and Find Full Text PDFWe demonstrate single-shot readout of a silicon quantum dot spin qubit, and we measure the spin relaxation time T1. We show that the rate of spin loading can be tuned by an order of magnitude by changing the amplitude of a pulsed-gate voltage, and the fraction of spin-up electrons loaded can also be controlled. This tunability arises because electron spins can be loaded through an orbital excited state.
View Article and Find Full Text PDFWe report integrated charge sensing measurements on a Si/SiGe double quantum dot. The quantum dot is shown to be tunable from a single, large dot to a well-isolated double dot. Charge sensing measurements enable the extraction of the tunnel coupling t between the quantum dots as a function of the voltage on the top gates defining the device.
View Article and Find Full Text PDF