Publications by authors named "B J Vakoc"

Background Low-level light therapy (LLLT) has been shown to modulate recovery in patients with traumatic brain injury (TBI). However, the impact of LLLT on the functional connectivity of the brain when at rest has not been well studied. Purpose To use functional MRI to assess the effect of LLLT on whole-brain resting-state functional connectivity (RSFC) in patients with moderate TBI at acute (within 1 week), subacute (2-3 weeks), and late-subacute (3 months) recovery phases.

View Article and Find Full Text PDF

Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling.

View Article and Find Full Text PDF

Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling.

View Article and Find Full Text PDF

Significance: Optical coherence tomography (OCT) can be integrated into needle probes to provide real-time navigational guidance. However, unscanned implementations, which are the simplest to build, often struggle to discriminate the relevant tissues.

Aim: We explore the use of polarization-sensitive (PS) methods as a means to enhance signal interpretability within unscanned coherence tomography probes.

View Article and Find Full Text PDF

We demonstrate that a simple, unscanned polarization-sensitive optical coherence tomography needle probe can be used to perform layer identification in biological tissues. Broadband light from a laser centered at 1310 nm was sent through a fiber that was embedded into a needle, and analysis of the polarization state of the returning light after interference coupled with Doppler-based tracking allowed the calculation of phase retardation and optic axis orientation at each needle location. Proof-of-concept phase retardation mapping was shown in Atlantic salmon tissue, while axis orientation mapping was demonstrated in white shrimp tissue.

View Article and Find Full Text PDF