Publications by authors named "B J O'Roak"

Cre recombinase knock-in mouse lines have served as invaluable genetic tools for understanding key developmental processes altered in autism. However, insertion of exogenous DNA into the genome can have unintended effects on local gene regulation or protein function that must be carefully considered. Here, we analyze a recently generated Tbr1-2A-CreER knock-in mouse line, where a 2A-CreER cassette was inserted in-frame before the stop codon of the transcription factor gene Tbr1.

View Article and Find Full Text PDF

Spatiotemporal control of Cre-mediated recombination has been an invaluable tool for understanding key developmental processes. For example, knock-in of into cell type marker gene loci drives expression under endogenous promoter and enhancer sequences, greatly facilitating the study of diverse neuronal subtypes in the cerebral cortex. However, insertion of exogenous DNA into the genome can have unintended effects on local gene regulation or protein function that must be carefully considered.

View Article and Find Full Text PDF

Background: Cancer health research relies on large-scale cohorts to derive generalizable results for different populations. While traditional epidemiological cohorts often use costly random sampling or self-motivated, preselected groups, a shift toward health system-based cohorts has emerged. However, such cohorts depend on participants remaining within a single system.

View Article and Find Full Text PDF

Passively administered monoclonal antibodies (mAbs) given before or after viral infection can prevent or blunt disease. Here, we examine the efficacy of aerosol mAb delivery to prevent infection and disease in rhesus macaques inoculated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant via intranasal and intratracheal routes. SARS-CoV-2 human mAbs or a human mAb directed to respiratory syncytial virus (RSV) are nebulized and delivered using positive airflow via facemask to sedated macaques pre- and post-infection.

View Article and Find Full Text PDF

The Healthy Oregon Project (HOP) is a statewide effort that aims to build a large research repository and influence the health of Oregonians through providing no-cost genetic screening to participants for a next-generation sequencing 32-gene panel comprising genes related to inherited cancers and familial hypercholesterolemia. This type of unbiased population screening can detect at-risk individuals who may otherwise be missed by conventional medical approaches. However, challenges exist for this type of high-throughput testing in an academic setting, including developing a low-cost high-efficiency test and scaling up the clinical laboratory for processing large numbers of samples.

View Article and Find Full Text PDF