Publications by authors named "B J M Etzold"

The influence of oxidation state and crystalline structure on the dissolution mechanisms of both pure iron oxides and combusted iron particles in aqueous oxalic acid (0.5 mol/l) at 60 °C was systematically investigated. Dissolution experiments were carried out in a temperature-controlled, continuous-flow capillary reactor, allowing for the removal of reaction products and thereby suppressing the autocatalytic reaction mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • Tomographic imaging of time-evolving samples is important but challenging, especially at the nanoscale due to limits in speed and resolution in current methods.
  • A new dynamic nanotomography technique was developed that enhances imaging efficiency using sparse dynamic imaging and 4D tomography modeling.
  • This technique significantly improves temporal resolution by 40 times and allows for detailed observations of the hydration process in polymer electrolyte fuel cell catalysts, aiding in the understanding and optimization of their performance.
View Article and Find Full Text PDF

The increasing demand in healthcare for accessible and cost-effective analytical tools is driving the development of reliable platforms to the customization of therapy according to individual patient drug serum levels, of anti-psychotics in schizophrenia. A modifier-free microfluidic paper-based electroanalytical device (μPED) holds promise as a portable, sensitive, and affordable solution. While many studies focus on the working electrode catalysts, improvements by engineering aspects of the electrode arrangement are less reported.

View Article and Find Full Text PDF

The synthesis of bimetallic and trimetallic platinum-based octahedral catalysts for the cathode of proton exchange membrane fuel cells (PEMFCs) is a particularly active area aimed at meeting technological requirements in terms of durability and cost. The electrocatalytic activity and stability of these shaped catalysts were tested at relatively high potentials (@0.9 V vs RHE) and at lower current densities using the rotating disk electrode, which is less suitable for assessing their behavior under the operating conditions of PEMFCs.

View Article and Find Full Text PDF
Article Synopsis
  • Iron shows promise as a non-toxic energy carrier for long-term energy storage, but detailed knowledge of its oxidation kinetics for micrometer-sized particles is limited.
  • This study uses temperature-programmed oxidation and boron nitride dilution to prevent sintering, allowing investigation of individual particle behavior during oxidation.
  • Findings reveal that iron oxidation follows a parabolic rate law, with key data on phase compositions and rate constants obtained, emphasizing the importance of particle size distribution in modeling oxidation kinetics.
View Article and Find Full Text PDF