Publications by authors named "B J J Slagmolen"

We present the design and commissioning of a cryogenic low-vibration test facility that measures displacement noise from a gram-scale silicon cantilever at the level of 10-16m/Hz at 1 kHz. This sensitivity is necessary for future tests of thermal noise models on cross sections of silicon suspension samples proposed for future gravitational-wave detectors. A volume of ∼36 l is enclosed by radiation shields cooling an optical test cavity that is suspended from a multi-stage pendulum chain providing isolation from acoustic and environmental noise.

View Article and Find Full Text PDF
Article Synopsis
  • Laser frequency noise is problematic in low-frequency measurements, but can be mitigated using differential measurement schemes with heterodyne optical phase-locked loops.
  • The study demonstrates simultaneous optical phase-locked loops with notable specifications, achieving a 300 MHz offset range and an impressive 250 dB open-loop gain at 0.1 Hz.
  • A four-laser differential measurement setup is detailed, effectively suppressing relative free-running noise to enhance measurement precision below 0.1 / at 0.1 Hz.
View Article and Find Full Text PDF

The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot be simultaneously measured with arbitrary precision, giving rise to an apparent limitation known as the standard quantum limit (SQL). Gravitational-wave detectors use photons to continuously measure the positions of freely falling mirrors and so are affected by the SQL. We investigated the performance of the Laser Interferometer Gravitational-Wave Observatory (LIGO) after the experimental realization of frequency-dependent squeezing designed to surpass the SQL.

View Article and Find Full Text PDF

Conventional heterodyne readout schemes are now under reconsideration due to the realization of techniques to evade its inherent 3 dB signal-to-noise penalty. The application of high-frequency, quadrature-entangled, two-mode squeezed states can further improve the readout sensitivity of audio-band signals. In this Letter, we experimentally demonstrate quantum-enhanced heterodyne readout of two spatially distinct interferometers with direct optical signal combination, circumventing the 3 dB heterodyne signal-to-noise penalty.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates compact binary coalescences with at least one component mass between 0.2 and 1.0 solar masses using data from Advanced LIGO and Advanced Virgo detectors over six months in 2019, but they found no significant gravitational wave candidates.
  • The analysis leads to an upper limit on the merger rate of subsolar binaries ranging from 220 to 24,200 Gpc⁻³ yr⁻¹, based on the detected signals’ false alarm rate.
  • The researchers use these limits to set new constraints on two models for subsolar-mass compact objects: primordial black holes (suggesting they make up less than 6% of dark matter) and
View Article and Find Full Text PDF