Publications by authors named "B J Hickey"

Background: Many older people are now living with co-occurring physical and mental health disorders, but these often managed separately. The aim of this systematic review was to explore integrated physical-mental health care services available internationally for older people living with mental health diagnoses, and whether these result in improved health outcomes.

Methods: Medline, Embase, CINAHL, PsycINFO and Scopus were searched with a predefined search strategy (PROSPERO: CRD42022383824), generating 6210 articles.

View Article and Find Full Text PDF

Schwann cells are vital to development and maintenance of the peripheral nervous system and their dysfunction has been implicated in a range of neurological and neoplastic disorders, including -related schwannomatosis. We developed a novel human induced pluripotent stem cell (hiPSC) model to study Schwann cell differentiation in health and disease. We performed transcriptomic, immunofluorescence, and morphological analysis of hiPSC derived Schwann cell precursors (SPCs) and terminally differentiated Schwann cells (SCs) representing distinct stages of development.

View Article and Find Full Text PDF

Sequestration of small molecule guests in the cavity of a water-soluble deep cavitand host has a variety of effects on their NMR properties. The effects of encapsulation on the longitudinal () and transverse () relaxation times of the protons in variably sized guest molecules are analyzed here, using inversion recovery and spin-echo experiments. Sequestration of neutral organic species from the bulk solvent reduces the overall proton relaxation times, but the magnitude of this effect on different protons in the same molecule has a variety of contributors, from the motion of the guest when bound, to the position of the protons in the cavity and the magnetic anisotropy induced by the aromatic walls of the host.

View Article and Find Full Text PDF

In an ongoing effort to incorporate active learning and promote higher order learning outcomes in undergraduate organic chemistry, a hybrid ("flipped") classroom structure has been used to facilitate a series of collaborative activities in the first two courses of the lower division organic chemistry sequence. An observational study of seven classes over a five-year period reveals there is a strong correlation between performance on the in-class activities and performance on the final exam across all classes; however, a significant number of students in these courses continue to struggle on both the in-class activities and final exam. The Activity Engagement Survey (AcES) was administered in the most recent course offering included in this study, and these preliminary data suggest that students who achieved lower scores on the in-class activities had lower levels of emotional and behavioral/cognitive engagement and were less likely to work in collaborative groups.

View Article and Find Full Text PDF

An indirect competitive binding mechanism can be exploited to allow a combination of cationic fluorophores and water-soluble synthetic receptors to selectively recognize and discriminate peptide strands containing a single isomeric residue in the backbone. Peptide isomerization occurs in long-lived proteins and has been linked with diseases such as Alzheimer's, cataracts and cancer, so isomers are valuable yet underexplored targets for selective recognition. Planar cationic fluorophores can selectively bind hydrophobic, Trp-containing peptide strands in solution, and when paired with receptors that provide a competitive host for the fluorophore, can form a differential sensing array that enables selective discrimination of peptide isomers.

View Article and Find Full Text PDF