Photonic stepped-frequency radars based on optical frequency-shifting modulation have shown attractive properties such as wide bandwidth, centimeter range resolution, inherent frequency-time linearity with low spectrum spurs, and reduced system complexity. However, existing approaches typically exhibit meter- or centimeter-level radar range ambiguity, inversely proportional to the frequency step, due to the large frequency shift determined by acousto-optic or electro-optic (EO) modulators. Here, we overcome this limitation by injecting a narrowband, stepped-frequency signal into an optical frequency-shifting fiber cavity to achieve, for the first time, to our knowledge, a broadband photonic stepped-frequency radar with 150-m unambiguous detection and centimeter range resolution, surpassing the reported photonic- and electronic-based counterparts.
View Article and Find Full Text PDFMicrowave photonics (MWP) has unlocked a new paradigm for Radio Frequency (RF) signal processing by harnessing the inherent broadband and tunable nature of photonic components. Despite numerous efforts made to implement integrated MWP filters, a key RF processing functionality, it remains a long-standing challenge to achieve a fully integrated photonic circuit that can merge the megahertz-level spectral resolution required for RF applications with key electro-optic components. Here, we overcome this challenge by introducing a compact 5 mm × 5 mm chip-scale MWP filter with active E-O components, demonstrating 37 MHz spectral resolution.
View Article and Find Full Text PDFBackground: Self-monitoring of blood pressure is a key strategy in managing hypertension but may be challenging and burdensome for patients. The aim of the study was to describe the perspectives and experiences of self-monitoring of blood pressure in patients with hypertension.
Methods: MEDLINE, Embase, PsycINFO, and CINAHL were searched from database inception to March 2022.