Introduction: We explored associations between measurements of the ocular choroid microvasculature and Alzheimer's disease (AD) risk.
Methods: We measured the choroidal vasculature appearing in optical coherence tomography (OCT) scans of 69 healthy, mid-life individuals in the PREVENT Dementia cohort. The cohort was prospectively split into low-, medium-, and high-risk groups based on the presence of known risk factors (apolipoprotein E [] ε4 genotype and family history of dementia [FH]).
, a genus in the family Botryosphaeriaceae, has a broad host range and causes dieback, root rot, fruit rot, leaf rot, and blights in many plant species across sub-tropical and tropical geographical areas (Alves et al., 2008). In palms, this fungal pathogen is known to cause fruit and heart rot, wood decay and leaf blight around the globe (Atallah et al.
View Article and Find Full Text PDFPurpose: Dimensional measures of retinal features are subject to the optical influence of ocular magnification. We examined the impact of ocular magnification on the association between axial length (AL) and measurements of retinal vessel caliber in fundus photographs.
Design: Cross-sectional study.
Aims: Early in the COVID-19 pandemic, evidence emerged suggesting that people with diabetic retinopathy (DR) or other microvascular diseases had greater risk of severe short-term outcomes. This study evaluated longer-term outcomes, providing more generalisable evidence.
Methods: We identified a cohort of UKBiobank participants with diabetes and retrieved their diagnostic codes for a variety of microvascular diseases, complications of diabetes and systemic comorbidities.
Understanding of newborn immune ontogeny in the first week of life will enable age-appropriate strategies for safeguarding vulnerable newborns against infectious diseases. Here we conducted an observational study exploring the immunological profile of infants longitudinally throughout their first week of life. Our Expanded Program on Immunization - Human Immunology Project Consortium (EPIC-HIPC) studies the epigenetic regulation of systemic immunity using small volumes of peripheral blood samples collected from West African neonates on days of life (DOL) 0, 1, 3, and 7.
View Article and Find Full Text PDF