Focused ion beam (FIB) is frequently used to prepare electron- and X-ray-beam-transparent thin sections of samples, called lamellae. Typically, lamellae are prepared from only a subregion of a sample. In this paper, we present a novel approach for FIB lamella preparation of microscopic samples, wherein the entire cross-section of the whole sample can be investigated.
View Article and Find Full Text PDFVascular endothelial cells are exposed to mechanical forces due to their presence at the interface between the vessel wall and flowing blood. The patterns of these mechanical forces (laminar vs. turbulent) regulate endothelial cell function and play an important role in determining endothelial phenotype and ultimately cardiovascular health.
View Article and Find Full Text PDFElectrolyte is very critical to the performance of the high-voltage lithium (Li) metal battery (LMB), which is one of the most attractive candidates for the next-generation high-density energy-storage systems. Electrolyte formulation and structure determine the physical properties of the electrolytes and their interfacial chemistries on the electrode surfaces. Localized high-concentration electrolytes (LHCEs) outperform state-of-the-art carbonate electrolytes in many aspects in LMBs due to their unique solvation structures.
View Article and Find Full Text PDFSoil minerals and organic matter play critical roles in nutrient cycling and other life-essential biogeochemical processes, yet the structural and dynamical details of natural organic matter (NOM) film formation on smectites are not fully understood on the molecular scale. XRD of Suwannee River NOM-hectorite (a smectite clay) complexes shows that the humic and fulvic components of NOM bind predominantly at the external surfaces of packets of smectite platelets rather than in the interlayer slit pores, suggesting that the key behavior governing smectite-NOM interactions takes place in mesopores between smectite particles. New molecular dynamics modeling of a ∼110 Å HO-saturated smectite mesopore at near-neutral pH shows that model NOM molecules initially form small clusters of 2-3 NOM molecules near the center of the pore fluid.
View Article and Find Full Text PDFHigh-energy-density batteries with a LiCoO (LCO) cathode are of significant importance to the energy-storage market, especially for portable electronics. However, their development is greatly limited by the inferior performance under high voltages and challenging temperatures. Here, highly stable lithium (Li) metal batteries with LCO cathode, through the design of in situ formed, stable electrode/electrolyte interphases on both the Li anode and the LCO cathode, with an advanced electrolyte, are reported.
View Article and Find Full Text PDF