Bilateral defects (diameter 8 mm) in the medial tibial head of senile, osteopenic female sheep (n = 48; 9.63 ± 0.10 years; mean ± SEM) were treated with hydroxyapatite (HA)/beta-tricalcium phosphate (β-TCP)/dicalcium phosphate dihydrate (DCPD; brushite) cylinders coated with BMP-2 (25 or 250 micrograms) or growth differentiation factor (GDF)-5 (125 or 1250 micrograms; left side); cylinders without BMP served as controls (right side).
View Article and Find Full Text PDFOil-based calcium phosphate cement (Paste-CPC) shows not only prolonged shelf life and injection times, but also improved cohesion and reproducibility during application, while retaining the advantages of fast setting, mechanical strength, and biocompatibility. In addition, poly(L-lactide-co-glycolide) (PLGA) fiber reinforcement may decrease the risk for local extrusion. Bone defects (diameter 5 mm; depth 15 mm) generated ex vivo in lumbar (L) spines of female Merino sheep (2-4 years) were augmented using: (i) water-based CPC with 10% PLGA fiber reinforcement (L3); (ii) Paste-CPC (L4); or (iii) clinically established polymethylmethacrylate (PMMA) bone cement (L5).
View Article and Find Full Text PDFTo assess the clinical course of a sheep stifle joint model for osteochondral (OC) defects, medial femoral condyles (MFC) were exposed without patella luxation using medial parapatellar skin (3-4 cm) and deep incisions (2-3 cm). Two defects (7 mm diameter; 10 mm depth; OC punch) were left empty or refilled with osteochondral autologous transplantation cylinders (OATS) and explanted after six weeks. Incision-to-suture time, anesthesia time, and postoperative wound or impairment scores were compared to those in sham-operated animals.
View Article and Find Full Text PDFBackground Context: Targeted delivery of osteoinductive bone morphogenetic proteins (eg, GDF5) in bioresorbable calcium phosphate cement (CPC), potentially suitable for vertebroplasty and kyphoplasty of osteoporotic vertebral fractures, may be required to counteract augmented local bone catabolism and to support complete bone regeneration. The biologically optimized GDF5 mutant BB-1 may represent an attractive drug candidate for this purpose.
Purpose: The aim of the current study was to test an injectable, poly(l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming CPC containing low-dose BB-1 in a sheep lumbar osteopenia model.
Background Context: Biodegradable calcium phosphate cement (CPC) represents a promising option for the surgical treatment of osteoporotic vertebral fractures. Because of augmented local bone catabolism, however, additional targeted delivery of bone morphogenetic proteins with the CPC may be needed to promote rapid and complete bone regeneration.
Purpose: In the present study, an injectable, poly(l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming cement (CPC) containing the bone morphogenetic protein GDF5 was tested in a sheep lumbar osteopenia model.