We present a theoretical study and numerical simulation of Marangoni convection within ellipsoidal isotropic droplets embedded in free-standing smectic films (FSSFs). The thermocapillary flows are analyzed for both isotropic droplets spontaneously formed in FSSF overheated above the bulk smectic-isotropic transition and oil lenses deposited on the surface of the smectic film. The realistic model for which the upper drop interface is free from the smectic layers, while at the lower drop surface the smectic layering persists is considered in detail.
View Article and Find Full Text PDFWe report results of X-ray scattering studies of the angular structure factor of liquid crystal hexatic-B films. According to the sixfold rotational symmetry of the hexatic-B phase, its characteristic scattering splits into six reflections. The shape of the radial and angular cross-sections of these reflections and their temperature evolution are analyzed.
View Article and Find Full Text PDFThe spontaneous formation of chiral structures offers a variety of liquid crystals (LC) phases that could be further tailored for practical applications. In our work, the characteristic features of spiral ordering in the cholesteric phase of EZL10/10 LC were evaluated. To disclose resonant reflections related to a nanoscale helix pitch, resonant soft X-ray scattering at the carbon K edge was employed.
View Article and Find Full Text PDFEur Phys J E Soft Matter
June 2021
We study theoretically internal flows in isotropic droplets formed in horizontal free-standing smectic films (FSSF) overheated above the bulk smectic-isotropic transition. The convection is due to vertical temperature gradient in the film and is driven by the surface tension variations at the drop interfaces. Using a conventional linear instability theory, we have found analytically the conditions under which the mechanical equilibrium within isotropic droplets in FSSFs becomes unstable relative to the thermocapillary convection.
View Article and Find Full Text PDFA theoretical study of the interaction and coalescence of isotropic droplets in overheated free-standing smectic films (FSSF) is presented. Experimentally it is clear that merging of such droplets is extremely rare. On the basis of the general thermodynamic approach to the stability of FSSF, we determined the energy gains and losses involved in the coalescence process.
View Article and Find Full Text PDF