The organization of nucleosomes in eukaryotic chromatin is thought to play a critical role in the regulation of the biological function of the chromatin. Because of this potential role in regulation, a number of techniques have been developed, which combine chromatin fragmentation around nucleosomes with next-generation sequencing to map the location of nucleosomes in chromatin. In this section, a procedure using a kit from New England Biolabs (NEB NEXT Ultra II FS DNA library prep Kit) to fragment chromatin in preparation for next-generation sequencing is described and compared to other available procedures for mapping nucleosome location.
View Article and Find Full Text PDFSince epigenetic regulation seemed likely to be involved in SV40 early transcription following infection, we have analyzed the organization of nucleosomes carrying histone modifications (acetyl-H3, acetyl-H4, H3K9me1, H3K9me3, H3K4me1, H3K4me3, H3K27me3, H4K20me1) at 30 min and 2 h post infection in SV40 minichromosomes prepared in the absence or presence of the transcription inhibitor dichloro-1-beta-d-ribofuranosyl benzimidazole. The former condition was used to determine how SV40 chromatin structure changed during early transcription, and the latter was used to determine the role of active transcription. The location of RNAPII was used as a marker to identify where histone modifications were most likely to be involved in regulation.
View Article and Find Full Text PDFSP1 binding in SV40 chromatin in vitro and in vivo was characterized in order to better understand its role during the initiation of early transcription. We observed that chromatin from disrupted virions, but not minichromosomes, was efficiently bound by HIS-tagged SP1 in vitro, while the opposite was true for the presence of endogenous SP1 introduced in vivo. Using ChIP-Seq to compare the location of SP1 to nucleosomes carrying modified histones, we found that SP1 could occupy its whole binding site in virion chromatin but only the early side of its binding site in most of the minichromosomes carrying modified histones due to the presence of overlapping nucleosomes.
View Article and Find Full Text PDFThe location of nucleosomes in chromatin significantly impacts many biological processes including DNA replication, repair, and gene expression. A number of techniques have been developed for mapping nucleosome locations in chromatin including MN-Seq (micrococcal nuclease digestion followed by next-generation sequencing), ATAC-Seq (Assay for Transposase-Accessible Chromatin followed by next-generation sequencing), and ChIP-Seq (chromatin immunoprecipitation and fragmentation followed by next-generation sequencing). All of these techniques have been successfully used, but each with its own limitations.
View Article and Find Full Text PDFSimian virus 40 (SV40) exists as chromatin throughout its life cycle and undergoes typical epigenetic regulation mediated by changes in nucleosome location and associated histone modifications. In order to investigate the role of epigenetic regulation during the encapsidation of late-stage minichromosomes into virions, we mapped the locations of nucleosomes containing acetylated or methylated lysines in the histone tails of H3 and H4 present in the chromatin from 48-h-postinfection minichromosomes and disrupted virions. In minichromosomes obtained late in infection, nucleosomes were found carrying various histone modifications primarily in the regulatory region, with a major nucleosome located within the enhancer and other nucleosomes at the early and late transcriptional start sites.
View Article and Find Full Text PDF