High-dimensional mass cytometry data potentially enable a comprehensive characterization of immune cells. In order to positively affect clinical trials and translational clinical research, this advanced technology needs to demonstrate a high reproducibility of results across multiple sites for both peripheral blood mononuclear cells (PBMC) and whole blood preparations. A dry 30-marker broad immunophenotyping panel and customized automated analysis software were recently engineered and are commercially available as the Fluidigm® Maxpar® Direct™ Immune Profiling Assay™.
View Article and Find Full Text PDFMass cytometry is an emerging technology capable of 40 or more correlated measurements on a single cell. The complexity and volume of data generated by this platform have accelerated the creation of novel methods for high-dimensional data analysis and visualization. A key step in any high-level data analysis is the removal of unwanted events, a process often referred to as data cleanup.
View Article and Find Full Text PDFThe fundamental purpose of log and log-like transforms for cytometry is to make measured population variabilities as uniform as possible. The long-standing success of the log transform was its ability to stabilize linearly increasing gain-dependent uncertainties and the success of the log-like transforms is that they extend this notion to include zero and negative measurement values. This study derives and examines a transform called VLog that stabilizes the three general sources of variability: (1) gain-dependent variability, (2) photo-electron counting error, and (3) signal-independent sources of error.
View Article and Find Full Text PDFAs the technology of cytometry matures, there is mounting pressure to address two major issues with data analyses. The first issue is to develop new analysis methods for high-dimensional data that can directly reveal and quantify important characteristics associated with complex cellular biology. The other issue is to replace subjective and inaccurate gating with automated methods that objectively define subpopulations and account for population overlap due to measurement uncertainty.
View Article and Find Full Text PDFBackground: Leuko64™ (Trillium Diagnostics) is a flow cytometric assay that measures neutrophil CD64 expression and serves as an in vitro indicator of infection/sepsis or the presence of a systemic acute inflammatory response. Leuko64 assay currently utilizes QuantiCALC, a semiautomated software that employs cluster algorithms to define cell populations. The software reduces subjective gating decisions, resulting in interanalyst variability of <5%.
View Article and Find Full Text PDF