Tissue-specific transcription factors play an essential role in establishing cell identity during development. We review our knowledge of the molecular events involved in the activation of the gene encoding the tissue-specific transcription factor HNF1 alpha (LFB1). The available data suggest that the maternal factors OZ-1, HNF4 alpha and HNF4 beta act as initial activators of the HNF1 alpha promoter.
View Article and Find Full Text PDFHormone-induced progesterone receptors (PR) bound to response elements stimulate transcription initiation at target promoters through a mechanism that presumably involves cofactors or coactivators. To allow identification of such cofactors of transcriptional activation in a functional assay, we have established a reconstituted transcription system that is characterized by a specific loss of responsiveness to purified baculovirus-expressed wild type PR. In contrast to wild type PR, a C-terminally truncated PR mutant displayed strong activation potential in this system.
View Article and Find Full Text PDFThe transcription factor hepatocyte nuclear factor 4 (HNF4) is an orphan member of the nuclear receptor superfamily expressed in mammals in liver, kidney, and the digestive tract. Recently, we isolated the Xenopus homolog of mammalian HNF4 and revealed that it is not only a tissue-specific transcription factor but also a maternal component of the Xenopus egg and distributed within an animal-to-vegetal gradient. We speculate that this gradient cooperates with the vegetally localized embryonic induction factor activin A to activate expression of HNF1alpha, a tissue-specific transcription factor with an expression pattern overlapping that of HNF4.
View Article and Find Full Text PDFThe gene encoding the tissue-specific transcription factor HNF1alpha (LFB1) is transcriptionally activated shortly after mid-blastula transition in Xenopus embryos. We have now shown that the HNF1alpha protein is localized in the nuclei of the liver, gall bladder, gut and pronephros of the developing larvae. In animal cap explants treated with activin A together with retinoic acid, we induced HNF1alpha in pronephric tubules and epithelial gut cells, i.
View Article and Find Full Text PDFHepatocyte nuclear factor 4 (HNF4) was first identified as a DNA binding activity in rat liver nuclear extracts. Protein purification had then led to the cDNA cloning of rat HNF4, which was found to be an orphan member of the nuclear receptor superfamily. Binding sites for this factor were identified in many tissue-specifically expressed genes, and the protein was found to be essential for early embryonic development in the mouse.
View Article and Find Full Text PDF