Achieving complex behavior in soft-bodied animals is a hard task, because their body morphology is not constrained by a fixed number of jointed elements, as in skeletal animals, and thus the control system has to deal with practically an infinite number of control variables (degrees of freedom). Almost 30 years of research on Octopus vulgaris motor control has revealed that octopuses efficiently control their body with strategies that emerged during the adaptive coevolution of their nervous system and body morphology. In this minireview, we highlight principles of embodied organization that were revealed by studying octopus motor control, and that are used as inspiration for soft robotics.
View Article and Find Full Text PDFHere, we present the first analysis of the connectome of a small volume of the vertical lobe (VL) a brain structure mediating the acquisition of long-term memory in this behaviorally advanced mollusk. Serial section electron microscopy revealed new types of interneurons, cellular components of extensive modulatory systems, and multiple synaptic motifs. The sensory input to the VL is conveyed via~1.
View Article and Find Full Text PDFConnectomics is fundamental in propelling our understanding of the nervous system's organization, unearthing cells and wiring diagrams reconstructed from volume electron microscopy (EM) datasets. Such reconstructions, on the one hand, have benefited from ever more precise automatic segmentation methods, which leverage sophisticated deep learning architectures and advanced machine learning algorithms. On the other hand, the field of neuroscience at large, and of image processing in particular, has manifested a need for user-friendly and open source tools which enable the community to carry out advanced analyses.
View Article and Find Full Text PDFConnectomics is fundamental in propelling our understanding of the nervous system’s organization, unearthing cells and wiring diagrams reconstructed from volume electron microscopy (EM) datasets. Such reconstructions, on the one hand, have benefited from ever more precise automatic segmentation methods, which leverage sophisticated deep learning architectures and advanced machine learning algorithms. On the other hand, the field of neuroscience at large, and of image processing in particular, has manifested a need for user-friendly and open source tools which enable the community to carry out advanced analyses.
View Article and Find Full Text PDFDue to their unique body, standard behavioral testing protocols are often hard to apply to octopuses. Our protocol enables controlled behavioral testing of the sensory systems in single arms while allowing observation of the arm motion. The protocol allows the researcher to exclude the sense of vision without surgical manipulation and selectively test peripheral sensory input-derived learning and motor behavior.
View Article and Find Full Text PDF