Publications by authors named "B Hobo"

Adeno-associated viral vectors (AAVs) are a remarkable tool for investigating the central nervous system (CNS). Innovative capsids, such as AAV.PHP.

View Article and Find Full Text PDF

Gene therapy is a powerful approach to promote spinal cord regeneration. For a clinical application it is important to restrict therapeutic gene expression to the appropriate time window to limit unwanted side effects. The doxycycline (dox)-inducible system is a widely used regulatable gene expression platform, however, this system depends on a bacterial-derived immunogenic transactivator.

View Article and Find Full Text PDF

Background: Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer's disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains.

View Article and Find Full Text PDF

Adeno-associated viral vectors are widely used as vehicles for gene transfer to the nervous system. The promoter and viral vector serotype are two key factors that determine the expression dynamics of the transgene. A previous comparative study has demonstrated that AAV1 displays efficient transduction of layer V corticospinal neurons, but the optimal promoter for transgene expression in corticospinal neurons has not been determined yet.

View Article and Find Full Text PDF

Adeno-associated viral vectors have numerous applications in neuroscience, including the study of gene function in health and disease, targeting of light-sensitive proteins to anatomically distinct sets of neurons to manipulate neuronal activity (optogenetics), and the delivery of fluorescent protein to study anatomical connectivity in the brain. Moreover several phase I/II clinical trials for gene therapy of eye and brain diseases with adeno-associated viral vectors have shown that these vectors are well tolerated by human patients. In this chapter we describe a detailed protocol for the small scale production of recombinant adeno-associated viral vectors.

View Article and Find Full Text PDF