Publications by authors named "B Heyde"

Concentrations of pollutants like pharmaceuticals in soils typically decrease over time, though it often remains unclear whether this dissipation is caused by the transformation of the pollutant or a decreasing extractability. We developed a mathematical model that (1) explores the plausibility of different dissipation pathways, and (2) allows the quantification of concentration differences between aqueous soil extracts and soil solution. The model considers soil particles as uniform spheres, kinetic sorption towards an equilibrium (Freundlich model), and two dissipation pathways, irreversible transformation and mineralization (following 1 order kinetics) as well as the formation of non-extractable residues intraparticle diffusion.

View Article and Find Full Text PDF

The multicellular green alga has emerged as a valuable model organism for investigating various aspects of multicellularity and cellular differentiation, photoreception and phototaxis, cell division, biogenesis of the extracellular matrix and morphogenetic movements. While a range of molecular tools and bioinformatics resources have been made available for exploring these topics, the establishment of cell type-specific promoters in has not been achieved so far. Therefore, here, we conducted a thorough screening of transcriptome data from RNA sequencing analyses of in order to identify potential cell type-specific promoters.

View Article and Find Full Text PDF

The spheroidal green algae serves as a model system to investigate the formation of a complex, multifunctional extracellular matrix (ECM) in a relatively simple, multicellular organism with cell differentiation. The ECM is mainly composed of hydroxyproline-rich glycoproteins (HRGPs) and there are diverse region-specific, anatomically distinct structures in the ECM. One large protein family with importance for ECM biosynthesis stands out: the pherophorins.

View Article and Find Full Text PDF

Hexachlorobenzene (HCB), a representative of hydrophobic organic chemicals (HOC), belongs to the group of persistent organic pollutants (POPs) that can have harmful effects on humans and other biota. Sorption processes in soils and sediments largely determine the fate of HCB and the risks arising from the compound in the environment. In this context, especially HOC-organic matter interactions are intensively studied, whereas knowledge of HOC adsorption to mineral phases (e.

View Article and Find Full Text PDF

Soil fertilization with wastewater treatment plant (WWTP) biosolids is associated with the introduction of resistance genes (RGs), mobile genetic elements (MGEs) and potentially selective pollutants (antibiotics, heavy metals, disinfectants) into soil. Not much data are available on the parallel analysis of biosolid pollutant contents, RG/MGE abundances and microbial community composition. In the present study, DNA extracted from biosolids taken at 12 WWTPs (two large-scale, six middle-scale and four small-scale plants) was used to determine the abundance of RGs and MGEs via quantitative real-time PCR and the bacterial and archaeal community composition was assessed by 16S rRNA gene amplicon sequencing.

View Article and Find Full Text PDF