Publications by authors named "B Herberth"

The loss of native function of the DJ-1 protein has been linked to the development of Parkinson's (PD) and other neurodegenerative diseases. Here we show that DJ-1 aggregates into β-sheet structured soluble and fibrillar aggregates in vitro under physiological conditions and that this process is promoted by the oxidation of its catalytic Cys106 residue. This aggregation resulted in the loss of its native biochemical glyoxalase function and in addition oxidized DJ-1 aggregates were observed to localize within Lewy bodies, neurofibrillary tangles and amyloid plaques in human PD and Alzheimer's (AD) patients' post-mortem brain tissue.

View Article and Find Full Text PDF

Background: Multiple growth factors are known to control several aspects of neuronal biology, consecutively acting as morphogens to diversify neuronal fates, as guidance cues for axonal growth, and as modulators of survival or death to regulate neuronal numbers. The multiplicity of neuronal types is permitted by the combinatorial usage of growth factor receptors, each of which is expressed in distinct and overlapping subsets of neurons, and by the multitasking role of growth factor receptors, which recruit multiple signalling cascades differentially required for distinct biological outcomes. We have explored signalling robustness in cells where a given receptor tyrosine kinase (RTK) elicits qualitatively distinct outcomes.

View Article and Find Full Text PDF

Generation of skeletal muscles with forms adapted to their function is essential for normal movement. Muscle shape is patterned by the coordinated polarity of collectively migrating myoblasts. Constitutive inactivation of the protocadherin gene Fat1 uncoupled individual myoblast polarity within chains, altering the shape of selective groups of muscles in the shoulder and face.

View Article and Find Full Text PDF

In the developing CNS, the manifestation of the macro-glial phenotypes is delayed behind the formation of neurons. The "neurons first--glia second" principle seems to be valid for neural tissue differentiation throughout the neuraxis, but the reasons behind are far from clear. In the presented study, the mechanisms of this timing were investigated in vitro, in the course of the neural differentiation of one cell derived NE-4C neuroectodermal stem and P19 embryonic carcinoma cells.

View Article and Find Full Text PDF