Publications by authors named "B Hemmeryckx"

Butein is a plant flavonoid chalcone, with presumed anti-adipogenic properties. It was reported to impair preadipocyte differentiation, limit adipose tissue (AT) development and enhance white AT browning in rodents. In this study, we investigated the hypothesis that these effects of butein may occur via reduction of ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5) expression.

View Article and Find Full Text PDF

The aggrecanase ADAMTS5 (A Disintegrin and Metalloproteinase with ThromboSpondin type 1 motifs, member 5) and the cleavage of its substrate versican have been implicated in the development of heart valves. Furthermore, ADAMTS5 deficiency was shown to protect against diet-induced obesity, a known risk factor for cardiovascular disease. Therefore, in this study, we investigated the potential role of ADAMTS5 in cardiac function using ADAMTS5-deficient (Adamts5 ) mice and their wild-type (Adamts5 ) counterparts exposed to a standard-fat or a high-fat diet (HFD).

View Article and Find Full Text PDF

Obesity has become a global health-threat for every age group. It is well known that young mice (10-12 weeks of age) fed a western-type diet (WD) become obese and develop higher cholesterol levels and liver steatosis whereas insulin sensitivity is reduced. Less is known, however, about the effect of a WD on advanced-age mice.

View Article and Find Full Text PDF

Pulmonary exposure to nanoparticles (NPs) has been shown to induce pulmonary as well as cardiovascular toxicity. These effects might be enhanced in elderly subjects as a result of a compromised immunity and/or declined organ functions. To study the adverse in vivo effects of NPs in a model for the elderly, we exposed 18-month-old C75Bl/6 mice to multi-walled carbon nanotubes (MWCNTs) or ZnO NPs by intratracheal instillation once a week during 5 consecutive weeks.

View Article and Find Full Text PDF

Background: Mice deficient in the circadian clock gene BMAL1 (Brain and Muscle ARNT-like protein-1) exhibit a hypercoagulable state and an enhanced arterial and venous thrombogenicity, which aggravates with age. We investigated the effect of BMAL1 deficiency in mice at a different age on the diurnal rhythm of factors involved in coagulation and fibrinolysis.

Materials And Methods: Hepatic, cardiac and brain tissues were isolated from 10- and 25-weeks-old Bmal1-deficient (BMAL1) and wild-type (BMAL1) mice at ZT2 and at ZT14 to analyze the mRNA expression level of genes involved in coagulation and fibrinolysis.

View Article and Find Full Text PDF